LLM Engineer's Handbook - Notes & Diagrams

Table of Contents

Resources & Community

Chapter Notes & Diagrams

Chapter 1: Understanding the LLM Twin Concept and Architecture

Core Concepts

  • Introduction to LLM Twin concept
  • System architecture principles
  • ML pipeline fundamentals

System Architecture

flowchart TD
    A[Raw Data Sources] -->|Collect| B[Feature Pipeline]
    B -->|Process| C[Vector Store]
    D[Training Data] -->|Fine-tune| E[Base Model]
    E -->|Deploy| F[Inference Pipeline]
    C -->|Retrieve| F
    F -->|Serve| G[API Endpoints]
    G -->|Response| H[Users]

Chapter 2: Tooling and Installation

Key Components

  • Python ecosystem setup (Python 3.11.8)
  • MLOps/LLMOps tooling
  • MongoDB and vector databases
  • AWS configuration

Chapter 3: Data Engineering

Pipeline Overview

  • Data collection strategies
  • ETL process design
  • Warehouse integration

ETL Workflow

flowchart LR
    A[Web Sources] -->|Crawl| B[Raw Data]
    B -->|Extract| C[Text Content]
    C -->|Clean| D[Processed Text]
    D -->|Transform| E[Structured Data]
    E -->|Load| F[(MongoDB)]
    F -->|Index| G[(Vector Store)]

Chapter 4: RAG Feature Pipeline

RAG Concepts

  • Retrieval-Augmented Generation basics
  • Advanced techniques
  • Feature pipeline design

Architecture Components

flowchart TD
    A[Document Chunks] -->|Embed| B[Embeddings]
    B -->|Store| C[(Vector DB)]
    D[User Query] -->|Embed| E[Query Embedding]
    E -->|Search| C
    C -->|Retrieve| F[Context]
    F -->|Augment| G[LLM]
    D -->|Input| G
    G -->|Generate| H[Response]

Chapter 5: Supervised Fine-Tuning

Training Process

  • Instruction dataset creation
  • Fine-tuning techniques
  • Model evaluation

Training Flow

flowchart TD
    A[Base LLM] -->|Initialize| B[Training Process]
    C[Instruction Data] -->|Input| B
    B -->|Fine-tune| D[Trained Model]
    D -->|Evaluate| E[Model Metrics]
    E -->|Save| F[Model Registry]
    E -->|Iterate| B

Chapter 6: Fine-Tuning with Preference Alignment

Key Concepts

  • Preference datasets
  • Direct Preference Optimization (DPO)
  • Alignment techniques

Chapter 7: Evaluating LLMs

Evaluation Methods

  • Model metrics
  • RAG evaluation strategies
  • TwinLlama-3.1-8B analysis

Chapter 8: Inference Optimization

Optimization Strategies

  • Model parallelism
  • Quantization techniques
  • Performance tuning

Chapter 9: RAG Inference Pipeline

Pipeline Implementation

  • Advanced RAG techniques
  • Query optimization
  • Response generation

Advanced RAG Flow

flowchart TD
    A[Query] -->|Process| B[Query Understanding]
    B -->|Generate| C[Search Query]
    C -->|Search| D[Vector Store]
    D -->|Retrieve| E[Documents]
    E -->|Rerank| F[Ranked Results]
    F -->|Filter| G[Top K]
    G -->|Format| H[Prompt Template]
    H -->|Generate| I[Response]
    I -->|Post-process| J[Final Answer]

Chapter 10: Inference Pipeline Deployment

Deployment Strategy

  • Service architecture
  • Scaling patterns
  • Performance monitoring

Service Architecture

flowchart TD
    A[Client] -->|Request| B[Load Balancer]
    B -->|Route| C[API Gateway]
    C -->|Validate| D[Auth Service]
    C -->|Process| E[Inference Service]
    E -->|Query| F[(Vector Store)]
    E -->|Generate| G[LLM Service]
    G -->|Log| H[(Monitoring DB)]
    E -->|Return| I[Response]

Chapter 11: MLOps and LLMOps

DevOps Evolution

  • MLOps fundamentals
  • LLMOps specific practices
  • Cloud deployment

CI/CD Pipeline

flowchart LR
    A[Code] -->|Push| B[Git Repo]
    B -->|Trigger| C[CI Pipeline]
    C -->|Build| D[Docker Image]
    D -->|Push| E[Registry]
    E -->|Deploy| F[Model Service]
    F -->|Monitor| G[Metrics]
    G -->|Alert| H[Monitoring]

Usage Notes

  • Each diagram can be generated using C-c C-c in Emacs
  • The diagrams/ directory is created automatically
  • Mermaid-mode required for diagram generation
  • Add notes and update diagrams as you study each chapter

Author: Your Name

jwalsh@nexus

Last Updated: 2025-07-30 13:45:28

build: 2025-12-23 09:12 | sha: e32f33e