Agentic Process Management
Content
Introduction
Agentic Process Management (APM) represents the evolution from traditional process automation to AI-driven orchestration of autonomous agents. This section explores how APM systems manage complex workflows, handle state, and coordinate multiple agents.
Main Content
Core APM Components
Process Orchestration
graph TD O[Orchestrator] --> TL[Task Ledger] O --> PL[Progress Ledger] TL --> A1[Agent 1] TL --> A2[Agent 2] PL --> TL subgraph Agents A1 A2 end
- Task Management
- Decomposition strategies
- Priority handling
- Resource allocation
- Progress tracking
- Implementation Example
class ProcessOrchestrator: def __init__(self): self.task_ledger = TaskLedger() self.progress_ledger = ProgressLedger() self.agents = AgentPool() def orchestrate(self, process): tasks = self.decompose_process(process) for task in tasks: agent = self.agents.select_for_task(task) self.task_ledger.assign(task, agent) self.monitor_execution(agent, task)
State Management
stateDiagram-v2 [*] --> Pending Pending --> Active Active --> Stalled Active --> Completed Stalled --> Active Completed --> [*]
- Key Components
- State transitions
- Context preservation
- Failure recovery
- Progress tracking
- Implementation Example
class StateManager: def transition(self, process_id, from_state, to_state): with self.state_lock(process_id): current = self.get_state(process_id) if self.can_transition(current, to_state): self.update_state(process_id, to_state) self.notify_observers(process_id, current, to_state)
Agent Communication
sequenceDiagram participant O as Orchestrator participant A1 as Agent 1 participant A2 as Agent 2 participant M as Memory System O->>A1: Assign Task A1->>M: Store Context A1->>A2: Hand off Subtask A2->>M: Retrieve Context A2->>O: Report Progress
- Protocol Design
- Message formats
- Context sharing
- Error handling
- Progress reporting
- Implementation Example
class AgentCommunication: async def handle_message(self, message): match message.type: case "TASK_ASSIGNMENT": return await self.process_task(message) case "HANDOFF": return await self.handle_handoff(message) case "PROGRESS_UPDATE": return await self.update_progress(message) case "ERROR": return await self.handle_error(message)
Integration Patterns
Process Definition
process: name: "Document Analysis" steps: - type: "extraction" agent: "document_processor" requirements: - "text_extraction" - "metadata_analysis" - type: "analysis" agent: "content_analyzer" dependencies: - "extraction" - type: "summary" agent: "summarizer" dependencies: - "analysis"
Error Recovery
graph TD E[Error Detected] --> A{Recoverable?} A -->|Yes| R[Retry Logic] A -->|No| F[Failure Handling] R --> B{Success?} B -->|Yes| C[Continue] B -->|No| F
Practical Tooling: beads
Distributed Issue Tracking with beads
beads (bd) provides git-backed distributed issue tracking suited for
agentic workflows. Each "bead" is a self-contained task that travels with
the repository.
- Integration with Agent Systems
# Create a task for an agent session bd new "Implement user authentication" "Add OAuth2 flow with JWT tokens" # Agents can comment on progress bd comment www.wal.sh-abc "Completed OAuth2 configuration" # Close when done bd close www.wal.sh-abc "Implementation complete, tests passing"
- Key Properties for APM
Property Benefit Git-backed State travels with code, no external deps Distributed Works offline, syncs on push Context-aware Task history preserved in commit graph Agent-friendly Simple CLI for automated task management - Multi-Session Coordination
# Agent session can track its own bead class AgentSession: def __init__(self, task_description): self.bead_id = self.create_bead(task_description) def create_bead(self, description): result = subprocess.run( ['bd', 'new', description], capture_output=True, text=True ) return self.extract_bead_id(result.stdout) def log_progress(self, message): subprocess.run(['bd', 'comment', self.bead_id, message]) def complete(self): subprocess.run(['bd', 'close', self.bead_id])
- Workflow Example
sequenceDiagram participant U as User participant A1 as Agent Session 1 participant B as beads (bd) participant A2 as Agent Session 2 U->>B: bd new "Feature request" B->>A1: Assign bead-xyz A1->>B: bd comment "Starting research" A1->>B: bd comment "Design complete" A1->>A2: Context handoff A2->>B: bd comment "Implementation started" A2->>B: bd close "Feature complete"
APM Optimization
Performance Considerations
- Resource utilization
- State management efficiency
- Communication overhead
- Memory management
Scaling Strategies
- Horizontal scaling of agents
- Vertical scaling of processes
- Memory distribution
- Load balancing
Summary
Key APM concepts:
- Process orchestration and decomposition
- State and context management
- Agent communication protocols
- Error handling and recovery
- Performance optimization
Section References
- Forrester Research (2024). "The Rise of APM"
- Microsoft Research. "Magentic-One: Process Management"
- Key Implementations:
- Process Managers
- LangChain Flow
- AutoGen Framework
- State Management
- Vector Databases
- Memory Systems
- Communication Protocols
- Agent Messaging Systems
- Context Sharing Frameworks
- Process Managers