Agentic Process Management

Content

Introduction

Agentic Process Management (APM) represents the evolution from traditional process automation to AI-driven orchestration of autonomous agents. This section explores how APM systems manage complex workflows, handle state, and coordinate multiple agents.

Main Content

Core APM Components

Process Orchestration
graph TD
    O[Orchestrator] --> TL[Task Ledger]
    O --> PL[Progress Ledger]
    TL --> A1[Agent 1]
    TL --> A2[Agent 2]
    PL --> TL
    
    subgraph Agents
        A1
        A2
    end
  • Task Management
    • Decomposition strategies
    • Priority handling
    • Resource allocation
    • Progress tracking
  • Implementation Example
    class ProcessOrchestrator:
        def __init__(self):
            self.task_ledger = TaskLedger()
            self.progress_ledger = ProgressLedger()
            self.agents = AgentPool()
    
        def orchestrate(self, process):
            tasks = self.decompose_process(process)
            for task in tasks:
                agent = self.agents.select_for_task(task)
                self.task_ledger.assign(task, agent)
                self.monitor_execution(agent, task)
    
State Management
stateDiagram-v2
    [*] --> Pending
    Pending --> Active
    Active --> Stalled
    Active --> Completed
    Stalled --> Active
    Completed --> [*]
  • Key Components
    • State transitions
    • Context preservation
    • Failure recovery
    • Progress tracking
  • Implementation Example
    class StateManager:
        def transition(self, process_id, from_state, to_state):
            with self.state_lock(process_id):
                current = self.get_state(process_id)
                if self.can_transition(current, to_state):
                    self.update_state(process_id, to_state)
                    self.notify_observers(process_id, current, to_state)
    
Agent Communication
sequenceDiagram
    participant O as Orchestrator
    participant A1 as Agent 1
    participant A2 as Agent 2
    participant M as Memory System
    
    O->>A1: Assign Task
    A1->>M: Store Context
    A1->>A2: Hand off Subtask
    A2->>M: Retrieve Context
    A2->>O: Report Progress
  • Protocol Design
    • Message formats
    • Context sharing
    • Error handling
    • Progress reporting
  • Implementation Example
    class AgentCommunication:
        async def handle_message(self, message):
            match message.type:
                case "TASK_ASSIGNMENT":
                    return await self.process_task(message)
                case "HANDOFF":
                    return await self.handle_handoff(message)
                case "PROGRESS_UPDATE":
                    return await self.update_progress(message)
                case "ERROR":
                    return await self.handle_error(message)
    

Integration Patterns

Process Definition
process:
  name: "Document Analysis"
  steps:
    - type: "extraction"
      agent: "document_processor"
      requirements:
        - "text_extraction"
        - "metadata_analysis"
    - type: "analysis"
      agent: "content_analyzer"
      dependencies:
        - "extraction"
    - type: "summary"
      agent: "summarizer"
      dependencies:
        - "analysis"
Error Recovery
graph TD
    E[Error Detected] --> A{Recoverable?}
    A -->|Yes| R[Retry Logic]
    A -->|No| F[Failure Handling]
    R --> B{Success?}
    B -->|Yes| C[Continue]
    B -->|No| F

Practical Tooling: beads

Distributed Issue Tracking with beads

beads (bd) provides git-backed distributed issue tracking suited for agentic workflows. Each "bead" is a self-contained task that travels with the repository.

  • Integration with Agent Systems
    # Create a task for an agent session
    bd new "Implement user authentication" "Add OAuth2 flow with JWT tokens"
    
    # Agents can comment on progress
    bd comment www.wal.sh-abc "Completed OAuth2 configuration"
    
    # Close when done
    bd close www.wal.sh-abc "Implementation complete, tests passing"
    
  • Key Properties for APM
    Property Benefit
    Git-backed State travels with code, no external deps
    Distributed Works offline, syncs on push
    Context-aware Task history preserved in commit graph
    Agent-friendly Simple CLI for automated task management
  • Multi-Session Coordination
    # Agent session can track its own bead
    class AgentSession:
        def __init__(self, task_description):
            self.bead_id = self.create_bead(task_description)
    
        def create_bead(self, description):
            result = subprocess.run(
                ['bd', 'new', description],
                capture_output=True, text=True
            )
            return self.extract_bead_id(result.stdout)
    
        def log_progress(self, message):
            subprocess.run(['bd', 'comment', self.bead_id, message])
    
        def complete(self):
            subprocess.run(['bd', 'close', self.bead_id])
    
  • Workflow Example
    sequenceDiagram
        participant U as User
        participant A1 as Agent Session 1
        participant B as beads (bd)
        participant A2 as Agent Session 2
    
        U->>B: bd new "Feature request"
        B->>A1: Assign bead-xyz
        A1->>B: bd comment "Starting research"
        A1->>B: bd comment "Design complete"
        A1->>A2: Context handoff
        A2->>B: bd comment "Implementation started"
        A2->>B: bd close "Feature complete"
    

APM Optimization

Performance Considerations
  • Resource utilization
  • State management efficiency
  • Communication overhead
  • Memory management
Scaling Strategies
  • Horizontal scaling of agents
  • Vertical scaling of processes
  • Memory distribution
  • Load balancing

Summary

Key APM concepts:

  1. Process orchestration and decomposition
  2. State and context management
  3. Agent communication protocols
  4. Error handling and recovery
  5. Performance optimization

Section References

  • Forrester Research (2024). "The Rise of APM"
  • Microsoft Research. "Magentic-One: Process Management"
  • Key Implementations:
    • Process Managers
      • LangChain Flow
      • AutoGen Framework
    • State Management
      • Vector Databases
      • Memory Systems
    • Communication Protocols
      • Agent Messaging Systems
      • Context Sharing Frameworks

Author: Jason Walsh

j@wal.sh

Last Updated: 2025-12-21 23:05:48

build: 2025-12-23 09:12 | sha: e32f33e