Architectural Patterns

Content

Introduction

Architectural patterns in agentic systems define how autonomous agents interact, manage state, and accomplish tasks. This section explores core patterns for task execution, memory management, and agent coordination.

Main Content

Core Pattern Categories

Manager-Coordinator-Executor (MCE)
graph TD
    M[Manager] --> C1[Coordinator 1]
    M --> C2[Coordinator 2]
    C1 --> E1[Executor 1]
    C1 --> E2[Executor 2]
    C2 --> E3[Executor 3]
    C2 --> E4[Executor 4]
  • Components
    Manager
    High-level task planning and resource allocation
    Coordinator
    Task decomposition and workflow management
    Executor
    Specialized task execution and direct actions
  • Implementation Examples
    class Manager:
        def allocate_task(self, task):
            coordinator = self.select_coordinator(task)
            return coordinator.process(task)
    
    class Coordinator:
        def process(self, task):
            subtasks = self.decompose(task)
            executors = [self.assign_executor(t) for t in subtasks]
            return self.monitor_execution(executors)
    
    class Executor:
        def execute(self, subtask):
            result = self.perform_action(subtask)
            return self.validate_result(result)
    
Hand-off Pattern
sequenceDiagram
    participant A1 as Agent 1
    participant CM as Context Manager
    participant A2 as Agent 2
    
    A1->>CM: Store Context
    A1->>A2: Hand off Task + Context ID
    A2->>CM: Retrieve Context
    A2->>A2: Process Task
    A2->>CM: Update Context
  • Key Components
    Context Storage
    Maintains task state and history
    Transfer Protocol
    Defines hand-off mechanics
    State Validation
    Ensures context integrity
  • Implementation Example
    class ContextManager:
        def store_context(self, context_id, state):
            return self.vector_store.upsert({
                'id': context_id,
                'state': state,
                'timestamp': datetime.now(),
                'metadata': self.get_metadata()
            })
    
    class TaskHandoff:
        def transfer(self, from_agent, to_agent, task, context_id):
            context = self.context_manager.get_context(context_id)
            return HandoffProtocol(
                source=from_agent,
                target=to_agent,
                task=task,
                context=context
            ).execute()
    
Memory-Centric Pattern
graph TD
    STM[Short-term Memory] --> CM[Context Manager]
    LTM[Long-term Memory] --> CM
    CM --> TP[Task Processor]
    TP --> STM
    TP --> LTM
  • Components
    Short-term Memory
    Active context and current task state
    Long-term Memory
    Historical patterns and learned behaviors
    Context Manager
    Memory orchestration and retrieval
  • Implementation Example
    class MemorySystem:
        def __init__(self):
            self.stm = ShortTermMemory()
            self.ltm = LongTermMemory()
            self.context = ContextManager()
        
        def process_task(self, task):
            current_context = self.stm.get_active_context()
            similar_patterns = self.ltm.find_similar(task)
            execution_plan = self.context.create_plan(
                task, current_context, similar_patterns
            )
            return self.execute_with_memory(execution_plan)
    

Pattern Integration

Cross-Pattern Communication
graph TD
    MCP[MCE Pattern] --> HP[Handoff Protocol]
    HP --> MP[Memory Pattern]
    MP --> MCP
Implementation Considerations
  • State Management
    • Context preservation
    • Memory efficiency
    • Pattern storage
  • Error Handling
    • Recovery mechanisms
    • State rollback
    • Pattern adaptation
  • Resource Optimization
    • Memory allocation
    • Compute distribution
    • Context pruning

Summary

Key architectural patterns enable:

  1. Structured task decomposition and execution
  2. Efficient context management and transfer
  3. Integration of short and long-term memory
  4. Scalable agent coordination
  5. Robust error handling and recovery

Section References

  • Design Patterns: Elements of Reusable Agent Architectures
  • Microsoft Magentic-One Architecture Documentation
  • Vector Database Integration Patterns
  • Memory Management in Distributed Systems
  • Pattern implementations:
    • Manager-Coordinator-Executor
      • Anthropic's Agent System
      • OpenAI's Assistant API
    • Hand-off Systems
      • LangChain's Agent Framework
      • Auto-GPT Architecture
    • Memory Patterns
      • MemGPT
      • Vector Databases

Author: Jason Walsh

j@wal.sh

Last Updated: 2025-07-30 13:45:27

build: 2025-12-23 09:12 | sha: e32f33e